Venez ici !
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Meh he he he...
 
AccueilPortailRechercherDernières imagesS'enregistrerConnexion
Le Deal du moment : -17%
SSD interne Crucial SSD P3 1To NVME à ...
Voir le deal
49.99 €

 

 Linear algebra study realm

Aller en bas 
5 participants
Aller à la page : Précédent  1, 2
AuteurMessage
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 22:28

State and prove the distance formula in between: i) a point and a line, ii) a point and a plane.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 22:46

i) Suppose that you have a line X = tu + A and a point P. The area of a parallelogram is ||AP x u||. It height is the closest distance between P and u. Thus, ||AP x u||/||u|| = dist

ii) Suppose that you have a plan ax + by + cz = d and a point P(p1,p2,p3). The distance is the projection of the vector AP, where A(a1,a2,a3) is a point on the plane, onto the normal.
dist = ||Proj_n AP|| = |AP*n|/||n|| = |((p1 - a1, p2 - a2, p3 - a3)T * (a,b,c)T)| / (a^2 + b^2 + c^2)^(1/2) = |(a(p1 - a1) + b(p2 - a2) + c(p3 - a3))|/(a^2 + b^2 + c^2)^(1/2) = |(ap1 + bp2 + cp3 - aa1 - ba2 - ca3)|/(a^2 + b^2 + c^2)^(1/2) = |(ap1 + bp2 + cp3 - d)|/(a^2 + b^2 + c^2)^(1/2)
Revenir en haut Aller en bas
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 22:55

State the formula or describe how to find the distance between iii) two parallel lines, iv) two skew lines, v) two parallel planes.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:07

Suppose that you have X1 = tu + A and X2 = sv + B, use projection of the AB onto u x v. It's for parallel or skew-lines.

Suppose that you have ax + by + cz = d1 and ax + by + cz = d2, the shortest distance is |d2 - d1|/ (a^2 + b^2 + c^2)^(1/2)
Revenir en haut Aller en bas
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:10

State Cramer’s Rule.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:16

If AX=b, such as A=(a1|a2|a3) is a nxn invertible matrix, and X = (x,y,z)T and b are vectors, then the solution for X are:
x = det(b|a2|a3)/detA, y = det(a1|b|a3)/detA, z = det(a1|a2|b)/detA.
Revenir en haut Aller en bas
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:16

State the conditions which are equivalent to the statement: “The nxn matrix A is invertible”.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:25

  • detA not equal to 0
  • The RREF of A is I
  • Rank A = n
  • The columns of A are linearly independent
  • The columns of A span R^n
  • The columns of A form a basis for R^n
  • The rows of A are linearply independent
  • The solution for Ax=0 has only one trivial solution. i.e.: nullA = 0
  • The solution for Ax=b has only one solution for each b in R^n
  • A can be expressed as a finite roduct of elementary matrices
  • A^T is invertible
  • There is a nxn matrix B such as AB=I=BA
  • etc.
Revenir en haut Aller en bas
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:26

State the relationships between the rank of a matrix and the dimension of its row space, column space and null space.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:27

For matrix A mxn

dim(rowA)=dim(colA)=rankA
dim(nullA)= n - rank A
Revenir en haut Aller en bas
Dark

Dark


Messages : 184
Date d'inscription : 13/05/2008

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:28

Ok, I don't have questions anymore. 57
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:30

See how good I am? Ohohohoho... 034
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:32

Yep, you deserve my congratulations. Can you continue this job for our Physics exam. 6
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyDim 8 Mai 2011 - 23:34

06 How come you guys are so st*pid! These are simple questions, for maths God sake!
Revenir en haut Aller en bas
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 12:38

Can you do this question?

Find a linear system of two equations whose solution set has the form
(x1,x2,x3,x4)T = t1(1,2,3,4)T + t2(4,3,2,1)T, t1,t2 in R3
Then find the solutions of that system presenting them in vector form s1v1 + s2v2 and, finally,
show that vectors v1 and v2 belong to the set defined above.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 13:40

Sure!

From the set (x1,x2,x3,x4)T = t1(1,2,3,4)T + t2(4,3,2,1)T, you get
x1 = t1 + 4t2,
x2 = 2t1 + 3t2,
x3 = 3t1 + 2t2, and
x4 = 4t1 + t2

Reduce the matrix

1 4 x1
2 3 x2
3 2 x3
4 1 x4

You get
x3 - 3x1 - 2(x2 - 2x1) = x1 - 2x2 + x3 = 0
x4 - 4x1 - 3(x2 - 2x1) = 2x1 - 3x2 + x4 = 0

Reduce the matrix

1 -2 1 0
2 -3 0 1

You get
(x1,x2,x3,x4)T = s1(3,2,1,0)T + s2(-2,-1,0,1)T = s1/2 (6,4,2,0)T + s2(-2,-1,0,1)T = (s1 - 2t1 + 2t1)/2 (6,4,2,0)T + (s2 - t1 + t1)(-2,-1,0,1)T = (s1 - 2t1)/2 (6,4,2,0)T + 2t1/2 (6,4,2,0)T + (s2 - t1) (-2,-1,0,1)T + t1(-2,-1,0,1)T = (s1 - 2t1)/2 (6,4,2,0)T + (s2 - 1t1) (-2,-1,0,1)T + t1(6,4,2,0)T + t1(-2,-1,0,1)T = (s1 - 2t1)/2 (6,4,2,0)T + (s2 - 1t1) (-2,-1,0,1)T + t1(4,3,2,1)T = (s1 - 2t1)/3 (9,6,3,0)T + (s2 - 1t1)/4 (-8,-4,0,4)T + t1(4,3,2,1)T
Assume that (s1 - 2t1)/3 = (s2 - 1t1)/4 = t2
(s1 - 2t1)/3 (9,6,3,0)T + (s2 - 1t1)/4 (-8,-4,0,4)T + t1(4,3,2,1)T = t2(1,2,3,4)T + t1(4,3,2,1)T
Revenir en haut Aller en bas
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 13:50

If two matrices A and B both commute with ((0,-1)T|(1,0)T) show that A and B commute themselves, that is AB=BA.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:10

Then A((0,-1)T|(1,0)T) = ((0,-1)T|(1,0)T)A and B((0,-1)T|(1,0)T) = ((0,-1)T|(1,0)T)B.
Let A = ((a1,a2)T|(a3,a4)T)
((a1,a2)T|(a3,a4)T)((0,-1)T|(1,0)T) = ((0,-1)T|(1,0)T)((a1,a2)T|(a3,a4)T)
((-a2,-a4)T|(a1|a3)T) = ((a3,-a1)T|(a4|-a2)T)

This is consistent if and only if -a2=a3 and a1=a4

Thus define A = ((a1,a2)T|(-a2,a1)T) and B = ((b1,b2)T|(-b2,b1)T)
AB = ((a1,a2)T|(-a2,a1)T)((b1,b2)T|(-b2,b1)T) =
a1b1-a2b2 a1b2+a2b1
-a2b1-a1b2 -a2b2+a1b1

BA=((b1,b2)T|(-b2,b1)T)((a1,a2)T|(-a2,a1)T) =
b1a1+b2a2 b1a2+b2a1
-b1a2-b2a1 -b2a2+b1a1

Thus, AB=BA
Revenir en haut Aller en bas
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:12

Show that if matrix B commutes with a 2x2 matrix A then it must be of the form sA+tI for some scalars s and t.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:15

If B = sA+tI, the AB = A(sA+tI) = sA^2 + tA = (sA+tI)A = BA
If B is not sA+tI; suppose that B = sA+tC, then AB = A(sA+tC) = sA^2 + tAC ≠ sA^2 + tCA = (sA+tI)A = BA
Revenir en haut Aller en bas
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:23

Show that matrices which commute with the matrix A((1,3)T|(2,4)T) have the form sA+tI (for some scalars s and t).
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:58

Let B = ((b1,b2)T|(b3,b4)T)
AB = ((1,3)T|(2,4)T)((b1,b2)T|(b3,b4)T)
You'll get the system:
3b2 - 2b3 = 0
2b1 + 3b2 - 2b4 = 0
3b1 + 3b3 - 3b4 = 0

Find the solution for b1,b2,b3,b4, you'll get
B = r1((-1,1)T|(2/3,0)T) + r2((1,0)T|(0,1)T) = r1((-1,1)T|(2/3,0)T) + (r2 - r1 + r1)((1,0)T|(0,1)T) = r1((-1,1)T|(2/3,0)T) + r1((1,0)T|(0,1)T) + (r2 - r1)((1,0)T|(0,1)T) = r1((0,1)T|(2/3,1)T) + (r2 - 2r1 +r1)((1,0)T|(0,1)T) = r1/3((0,3)T|(2,3)T) + (r2 - r1)((1,0)T|(0,1)T) = r1/3((0,3)T|(2,3)T) + (r2 - r1 - r1/3 + r1/3)((1,0)T|(0,1)T) = r1/3((0,3)T|(2,3)T) + r1/3((1,0)T|(0,1)T)+ (r2 - r1 - r1/3)((1,0)T|(0,1)T) = r1/3((1,3)T|(2,4)T) + (r2 - r1 - r1/3)((1,0)T|(0,1)T)
Let r1 = s and r2 - r1 - r1/3 = t
Thus, B = r1/3((1,3)T|(2,4)T) + (r2 - r1 - r1/3)((1,0)T|(0,1)T) = sA+tI
Revenir en haut Aller en bas
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 15:58

Show that, if A and B are square matrices such that A B A =I then both A and B are invertible and A B = B A.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 EmptyLun 9 Mai 2011 - 16:01

If ABA = I;
then A(BA) = I, BA is the inverse of A
(AB)A = I, AB is the inverse of A
A can only have one inverse, thus AB=BA

Therefore,
A(AB) = I; (AA)B = I, AA is the inverse of B
(BA)A = I; B(AA) = I, the same AA is the inverse of B.
Revenir en haut Aller en bas
Contenu sponsorisé





Linear algebra study realm - Page 2 Empty
MessageSujet: Re: Linear algebra study realm   Linear algebra study realm - Page 2 Empty

Revenir en haut Aller en bas
 
Linear algebra study realm
Revenir en haut 
Page 2 sur 2Aller à la page : Précédent  1, 2
 Sujets similaires
-
» Calculus study realm
» Biology study realm

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Venez ici ! :: La vie :: Sciences et Savoirs-
Sauter vers: