| Calculus study realm | |
|
|
|
Auteur | Message |
---|
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 21:50 | |
| Fundamental Theorem
1) Approximate the area under the curve a) y = 2 - x^2, between x=0 and x=1, using 4 rectangles and left endpoint. rectangle base: 1/4 height: 2 - x^2, where x = (i-1)/4, i from 1 to 4 1/4 Σ(2 - ((i-1)/4)^2) = 1/4(8 - 1/16 Σ(i^2 - 2i + 1)) = 2 - 1/64 ((4(4+1)(2(4)+1)/6 - 2 (4(4+1)/2) + 4) = 2 - 1/64 (30 - 20 + 4) = 57/32 | |
|
| |
Sweet Admin
Messages : 270 Date d'inscription : 14/09/2007 Age : 32
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 21:51 | |
| It takes you so long to do one problem. -.- | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 21:54 | |
| That's because I'm watching Yuri no Boke at the same time. Who the hell study so early before the exam? | |
|
| |
Shadow
Messages : 237 Date d'inscription : 15/09/2007 Age : 32
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:00 | |
| You're using sigma for this? In the teacher's correction, it just adds the 4 areas. | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:01 | |
| See, Spirit always to the long way. It's why I want to see he's work. | |
|
| |
Shadow
Messages : 237 Date d'inscription : 15/09/2007 Age : 32
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:04 | |
| Why do you need to know the long way when you can use the short way? | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:06 | |
| Cool! A study realm XD I should have come here for the linear algebra exam. =.= | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:32 | |
| b) y = 3x - 7 between x=3 and x=6, using 6 rectangles and right endpoint.
rectangle base: 1/2 height: 3x - 7, where x = (i/2)+3, i from 1 to 6
1/2 Σ(3((i/2)+3) - 7) = 1/2 3Σ(i/2 + 3) - 7(6)/2 = 1/2 (3/2 6(6+1)/2 + 3(3)(6)) - 21 = 87/4 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:40 | |
| c) y = 4x^2 + 1, between x=-1 and x=2, using 3 rectangles and the midpoint
rectangle base: 1 height: 4x^2 + 1, where x = ((i-2) + (i-1))/2 = i - 3/2, 1 from 1 to 3
Σ(4(i - 3/2)^2 + 1) = 4Σ(i^2 - 3i + 9/4) + 3 = 4(3(3+1)(2(3)+1)/6 - 3(3)(3+1)/2 + (3)9/4) + 3 = 14 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:46 | |
| 2) Using Riemann Sums, find the area under the curve. a) y = 1 - x, between x=0 and x=1
rectangle base: 1/n height: 1 - x, where x = i/n, i from 1 to n
lim(n-->infinity) 1/n Σ(1 - i/n) = lim(n-->infinity) 1/n (n - 1/n n(n+1)/2) = lim(n-->infinity) (1 - (n+1)/2n) = 1 - 1/2 = 1/2 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:53 | |
| b) y = 4x + 1, between x=1 and x=3
i from 1 to n
lim(n-->infinity) 2/n Σ(4(1 + 2i/n) + 1) = lim(n-->infinity) 2/n (+ 8/n n(n+1)/2 + 5n) = lim(n-->infinity) (8(n+1)/n + 10) = 8 +10 = 18 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 22:57 | |
| c) y = 2x + 3, between x = -1 and x = 0
i from 1 to n
lim(n-->infinity) 1/n Σ(2(-1 + i/n) +3) = lim(n-->infinity) 1/n (2/n n(n+1)/2 +n) = lim(n-->infinity) ((n+1)/n + 1) = 1 + 1 = 2
| |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:01 | |
| d) y = x^2 + 1, between x=0 and x=2
i from 1 to n
lim(n-->infinity) 2/n Σ(4i^2 /n^2 + 1) = lim(n-->infinity) 2/n (4/n^2 n(n+1)(2n+1)/6 + n) = lim(n-->infinity) 4(2n^2 + 3n +1)/3n^2 +2 = 8/3 + 2 = 14/3
Dernière édition par spirit le Sam 14 Mai 2011 - 23:09, édité 1 fois | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:09 | |
| e) y = x^2 + 5x + 1, between x=0 and x=3
i from 1 to n
lim(n-->infinity) 3/n Σ(9i^2 /n^2 + 15i/n + 1) = lim(n-->infinity) 3/n (9/n^2 n(n+1)(2n+1)/6 + 15/n n(n+1)/2 +n) = lim(n-->infinity) 9(2n^2 + 3n + 1)/2n^2 + 45(n+1)/2n + 3 = 9 + 45/2 + 3 = 69/2 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:21 | |
| f) y = x^3, between x=1 and x=2
i from 1 to n
lim(n-->infinity) 1/n Σ(1 + i/n)^3 = lim(n-->infinity) 1/n Σ(1 + 3i/n + 3i^2 /n^2 + i^3 /n^3) = lim(n-->infinity) 1/n (n + 3/n n(n+1)/2 + 3/n^2 n(n+1)(2n+1)/6 + 1/n^3 n^2 (n+1)^2 /4) = lim(n-->infinity) (1 + 3(n^2 +n)/3n^2 + (2n^3 + 3n^2 + n)/2n^3 + (n^4 + 2n^3 + n^2)/4n^4) = 1 + 3/2 + 1 + 1/4 = 15/4 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:27 | |
| g) y = 3x^3 + 2x^2 + x, between x=0 and x=1
i from 1 to n
lim(n-->infinity) 1/n Σ(3i^3 /n^3 + 2i^2 /n^2 + i/n) = lim(n-->infinity) (3n^2 (n+1)^2 /4n^4 + 2n(n+1)(2n+1)/6n^3 + n(n+1)/2n^2) = 3/4 + 2/3 + 1/2 = 23/12 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:31 | |
| h) y = 4x^4, between x=0 and x=1
i from 1 to n
lim(n-->infinity) 1/n 4/n^4 Σi^4 = lim(n-->infinity) 4/n^4 (n+1)(6n^3 + 9n^2 +n -1)/30 = 4/5 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:41 | |
| y = x^2, between x=a to x=b
i from 1 to n
lim(n-->infinity) (b-a)/n Σ(a+ (b-a)i/n)^2 = lim(n-->infinity) (b-a)/n Σ(a^2 +2a(b-a)i/n + (b-a)^2 i^2 /n^2) = lim(n-->infinity) (b-a)/n (na^2 + 2a(b-a)/n n(n+1)/2 + (b-a)^2 /n^2 n(n+1)(2n+1)/6) = lim(n-->infinity) ((b-a)a^2 + a(b-a)^2 /n (n+1) + (b-a)^3 /n^2 (n+1)(2n+1)/6) = (b-a)a^2 + a(b-a)^2 + (b-a)^3 /3 = ba^2 - a^3 + ab^2 -2ba^2 +a^3 + b^3 /3 - ab^2 + ba^2 - a^3 /3 = (b^3 - a^3)/3 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:42 | |
| 3) Interpret as an area and evaluate. a) ∫(2 to 2) x tanx dx = 0 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Sam 14 Mai 2011 - 23:53 | |
| b) ∫(-1 to 2) (3 - |x|)dx = ∫(-1 to 0) (3 + x)dx + ∫(0 to 2) (3 - x)dx = (3x + x^2 /2)|(-1 to 0) + (3x - x^2 /2)|(0 to 2) = 3 - 1/2 + 6 - 2 = 6.5 | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Dim 15 Mai 2011 - 2:37 | |
| Yo, why did you stop without permission?
c) ∫(0 to 2) (4-y^2)^(1/2) dy --> from the function x = (4-y^2)^(1/2) ~> x^2 + y^2 = 4 --> circle
radius = 4/2 = 2
Area (first quadrant) = pi2^2 /4 = pi | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Dim 15 Mai 2011 - 2:42 | |
| d) ∫(0 to 6) (x - 2) dx - Spoiler:
Between x=0 and x=2, the function y=x-2 is negative, thus area = -(2)(2)/2 = -2 Between x=2 and x=6, area = (4)(4)/2 = 8 Total area = 8-2=6 | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Dim 15 Mai 2011 - 2:45 | |
| e) ∫(0 to 6) |x - 2| dx Between x=0 to x=2, area = 2 Between x=2 to x=6, area = 8 Total area = 8+2=10 | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Dim 15 Mai 2011 - 16:35 | |
| Huh? I didn't your help.
c) Let y = 2sinθ; dy = 2cosθ dθ ∫(0 to 2) (4-y^2)^(1/2) dy = ∫(0 to π/2) (4-4(sinθ)^2)^(1/2) 2cosθ dθ = ∫(0 to π/2) 2cosθ 2cosθ dθ = ∫(0 to π/2) 4(cosθ)^2 dθ = ∫(0 to π/2) 4(1/2 + 1/2 cos2θ) dθ = (2θ - sin2θ) |(0 to π/2) = π - 0 = π | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Dim 15 Mai 2011 - 16:36 | |
| d) ∫(0 to 6) (x - 2) dx = (x^2 / 2 - 2x)|(0 to 6) = 18 - 12 = 6 | |
|
| |
Contenu sponsorisé
| Sujet: Re: Calculus study realm | |
| |
|
| |
| Calculus study realm | |
|