Venez ici !
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Meh he he he...
 
AccueilPortailRechercherDernières imagesS'enregistrerConnexion
-55%
Le deal à ne pas rater :
Friteuse sans huile – PHILIPS – Airfryer HD9200/90 Série 3000
49.99 € 109.99 €
Voir le deal

 

 Calculus study realm

Aller en bas 
+2
spirit
JellyFish
6 participants
Aller à la page : Précédent  1, 2, 3 ... 6, 7, 8, 9, 10, 11  Suivant
AuteurMessage
JellyFish

JellyFish


Messages : 166
Date d'inscription : 18/09/2007
Age : 30

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 17:42

Calculus study realm  - Page 7 Th369321vcgbxj450w You're so mean. I curse you.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 17:43

Calculus study realm  - Page 7 369315rg7t2lcr0p Yeah, well, that's how life is. Next question!
Revenir en haut Aller en bas
JellyFish

JellyFish


Messages : 166
Date d'inscription : 18/09/2007
Age : 30

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 17:47

Do the whole assignment 10.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 17:47

Ok, it's gonna take a while.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 19:58

1) a) What is the difference between a sequence and a series? A sequence is a function of natural number to real number. A series is the sum of the terms in a sequence.
b) The sum of all terms in the sequence a_n is equal to 5. Thus, the series converges.
(what a wasting time questions)

2) a) Σ(n from 1 to ∞) 1/(4n-3)(4n+1)
consider 1/(4n-3)(4n+1) = A/(4n-3) + B/(4n+1) = (A(4n+1) + B(4n-3))/(4n-3)(4n+1)

n: 4A + 4B = 0; A = -B
1: A - 3B = 1; -B - 3B = -4B = 1; B = -1/4
A = 1/4

Σ(n from 1 to ∞) (1/4)/(4n-3) - (1/4)/(4n+1) = (1/4)/(1) - (1/4)/(5) + (1/4)/(5) - (1/4)/(9) + (1/4)/(9) - (1/4)/(13) + ... + (1/4)/(4n-3) - (1/4)/(4n+1) = 1/4 + (1/4)/(4n-3) = 1/4 + 0 = 1/4

b) Σ(n from 1 to ∞) π^n /3^(n+1) = π/9 (π/3)^(n-1)
This is a geometric series. Since -1 < r = π/3 > 1, the series diverge.

c) Σ(n from 1 to ∞) (3^n + 2^n)/6^n = Σ(n from 1 to ∞) 3/6 (3/6)^(n-1) + Σ(n from 1 to ∞) 2/6 (2/6)^(n-1)
Since both are geometric series, and -1 < r < 1,
Σ(n from 1 to ∞) (3^n + 2^n)/6^n = (3/6)/(1 - 3/6) + (2/6)/(1 - 2/6) = 3/2

3) a) Σ(n from 1 to ∞) 4^n x^n = Σ(n from 1 to ∞) 4x (4x)^(n-1)
This is a geometric series, thus -1 < r = 4x < 1; -1/4 < x < 1/4

b) Σ(n from 1 to ∞) (x - 4)^n = Σ(n from 1 to ∞) (x - 4)(x - 4)^(n-1)
This is a geometric series, thus -1 < r = x-4 < 1; 3 < x < 5

4) Test for convergence:
a) Σ(n from 1 to ∞) n/(n^2 + 4)
Integral test: let f(x) = x/(x^2 + 4). f(x) is continuous for all x (quotient of polynomials).
∫(1 to ∞) n/(n^2 + 4) = lim(c-->∞) ∫(1 to c) n/(n^2 + 4) = lim(c-->∞) 1/2 ln(n^2 + 4) |(1 to c) = lim(c-->∞) 1/2 (ln(c^2 + 4) - ln(5)) = ∞
Since the integral diverges, by the Integral test, the series diverges.

b) Σ(n from 1 to ∞) 1/n^(1/4)
This is a p-series with p = 1/4 < 1. Thus the series diverges.

c) Σ(n from 1 to ∞) 1/(n^3 +1)^(1/2)
Limit comparison test: let b_n = 1/n^(3/2)
lim(n-->∞) (1/(n^3 +1)^(1/2))/(1/n^(3/2)) = lim(n-->∞) n^(3/2)/(n^3 +1)^(1/2) = 1 > 0
Since Σ(n from 1 to ∞)b_n converges (p-series with p= 3/2 > 1), by the Limit comparison Test, Σ(n from 1 to ∞) 1/(n^3 +1)^(1/2) converges.

d) Σ(n from 1 to ∞) (2n^2 + 7n)/(3^n (n^2 + 4))
Ratio test: consider ((2(n+1)^2 + 7(n+1))/(3^(n+1) ((n+1)^2 + 4)))/((2n^2 + 7n)/(3^n (n^2 + 4)))
lim(n-->∞) r = 1/3 < 1
Thus, by the Ratio Test, the series converges.

e) Σ(n from 2 to ∞) n/ln(n)
Test for divergence: let f(x) = x/lnx. f(x) is continuous for x ≥ 2 (quotient of continuous functions)
lim(x-->∞) x/lnx = (l'hopital) lim(x-->∞) 1/(1/x) = lim(x-->∞) x = ∞ ≠ 0
Thus, by the Divergence Test, the series diverges.

f) Σ(n from 1 to ∞) cos(nπ)/n^(3/4) = Σ(n from 1 to ∞) (-1)^n /n^(3/4)
This is an alternating series. It decreases and lim(n-->∞)(-1)^n /n^(3/4) = 0
Thus, by the Alternating Series Test, it converges.

g) Σ(n from 1 to ∞) n^3 /3^n
Ratio test: consider ((n+1)^3 /3^(n+1))/(n^3 /3^n)
lim(n-->∞) r = 1/3 < 1
Thus, by the Ratio Test, the series converges.
Revenir en haut Aller en bas
JellyFish

JellyFish


Messages : 166
Date d'inscription : 18/09/2007
Age : 30

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyMer 18 Mai 2011 - 20:05

Give all the theoretical material that we need to memorize.
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 0:12

1) Definition of antiderivative.
A function such that its derivative is f(x).

2) Derive the integration by part rule with the product formula for differentiation.
When differentiating, we have
y = u·v; dy/dx = u·dv/dx + v·du/dx
dy = d(u·v) = u·dv + v·du
Thus ∫u·dv = ∫d(u·v) - ∫v·du = u·v - ∫v·du

3) Derive the reduction formula
i) ∫(sinx)^n dx = -cosx(sinx)^(n-1) + (n-1)∫(cosx)^2 (sinx)^(n-2) dx = -cosx(sinx)^(n-1) + (n-1)∫(1- (sinx)^2) (sinx)^(n-2) dx = -cosx(sinx)^(n-1) + (n-1)∫((sinx)^(n-2) - (sinx)^(n)) dx

n∫(sinx)^n dx = -cosx(sinx)^(n-1) + (n-1)∫(sinx)^(n-2) dx
∫(sinx)^n dx = -cosx(sinx)^(n-1) /n + (n-1)/n ∫(sinx)^(n-2) dx

f(x) = (sinx)^(n-1)
f(x) = (n-1)cosx (sinx)^(n-2)

g(x) = -cosx
g(x) = sinx

---
ii) ∫(cosx)^n dx = sinx (cosx)^(n-1) + (n-1)∫(sinx)^2 (cosx)^(n-2) dx = sinx (cosx)^(n-1) + (n-1)∫(1 - (cosx)^2) (cosx)^(n-2) dx = sinx (cosx)^(n-1) + (n-1)∫((cosx)^(n-2) - (cosx)^n) dx

n∫(cosx)^n dx = sinx (cosx)^(n-1) + (n-1)∫(cosx)^(n-2) dx
∫(cosx)^n dx = sinx (cosx)^(n-1) /n + (n-1)/n ∫(cosx)^(n-2) dx

f(x) = (cosx)^(n-1)
f(x) = -(n-1)sinx (cosx)^(n-2)

g(x) = sinx
g(x) = cosx

---
iii) ∫ln(x)^n dx = xln(x)^n - n∫ln(x)^(n-1)

f(x) = ln(x)^n
f(x) = nln(x)^(n-1) /x

g(x) = x
g(x) = 1

---
iv) ∫(secx)^n dx = ∫((tanx)^2 + 1)(secx)^(n-2) dx = ∫(secx)^(n-2) (tanx)^2 dx + ∫(secx)^(n-2) dx = tanx(secx)^(n-2) /(n-2) - 1/(n-2) ∫(secx)^n dx + ∫(secx)^(n-2) dx

(1 + 1/(n-2)) ∫(secx)^n dx = (n-1)/(n-2) ∫(secx)^n dx = tanx(secx)^(n-2) /(n-2) + ∫(secx)^(n-2) dx
∫(secx)^n dx = tanx(secx)^(n-2) /(n-1) + (n-2)/(n-1) ∫(secx)^(n-2) dx

f(x) = tanx
f(x) = (secx)^2

g(x) = (secx)^(n-2) /(n-2)
g(x) = (secx)^(n-3) secx tanx

---
v) ∫x^n e^x dx = x^n e^x - n∫x^(n-1) e^x dx

f(x) = x^n
f(x) = nx^(n-1)

g(x) = e^x
g(x) = e^x

4) Express a definite integral as a limit Riemann Sum and compute for a simple case.
E G: The function f(x) = x, between x =1 and x = 2.

Base of rectangle = (2-1)/n = 1/n

lim(n-->∞) Σ(i from 1 to n) i/n 1/n = lim(n-->∞) 1/n^2 Σ(i from 1 to n) i = lim(n-->∞) 1/n^2 n(n+1)/2 = lim(n-->∞) (n+1)/2n = 1/2

5) (Do I need to explain this? -_-lll)

6) Mean Value theorem for Integral Cal
If y = f(x) is continuous on the closed interval [a,b], then there is some number c in the interval [a,b], such that ∫(a to b) f(x) dx = f(c)·(b-a)
Proof: Since y = f(x) is continuous on [a,b], by the Extreme Value Theorem, the function attains a maximum and a minimum value M and m respectively in the interval [a,b]. Thus, there exist two point x1 and x2 such that f(x1) = M and f(x2) = m. Thus for all values of x in [a,b], we have m ≤ f(x) ≤ M.
From the properties of definite integral, we have
m(b-a) ≤ ∫(a to b) f(x) dx ≤ M(b-a)
m ≤ 1/(b-a) ∫(a to b) f(x) dx ≤ M
f(x2) ≤ 1/(b-a) ∫(a to b) f(x) dx ≤ f(x1)
Assume that x1>x2 (the similar argument can be made if the opposite is true). The above shows that 1/(b-a) ∫(a to b) f(x) dx is a number between f(x2) = m and f(x1) = M. Since y = f(x) is continuous, by the Intermediate Value Theorem, there exist a number c in ]x2, x1[ such that f(c) = 1/(b-a) ∫(a to b) f(x) dx. Therefore, there exist a value c such that ∫(a to b) f(x) dx = f(c)·(b-a).

7) Fundamental Theorem of Calculus (Part I)
If y = f(x) is continuous on [a,b], then the function g(x) = ∫(a to x) f(t) dt is continuous on [a,b] and differentiable on ]a,b[, and g'(x) = f(x).
Proof: If x and x + Δx are in ]a,b[, then
g(x + Δx) - g(x) = ∫(a to x + Δx) f(t) dt - ∫(a to x) f(t) dt = ∫(x to x + Δx) f(t) dt
Hence, for Δx ≠ 0, (g(x + Δx) - g(x))/Δx = 1/Δx ∫(x to x + Δx) f(t) dt
Since y = f(x) is continuous on [a,b], the Mean Value Theorem of Integral Calculus guarantees a number c in [a,b] such that
∫(x to x + Δx) f(t) dt = f(c) (x + Δx - x) = f(c) Δx
Hence, g'(x) = lim(Δx-->0) (g(x + Δx) - g(x))/Δx = lim(Δx-->0) f(c) = f(x)
This implies that y = g(x) is differentiable for any x on ]a,b[, and thus it must be continuous on [a,b]

Fundamental Theorem of Calculus (Part II)
If y = f(x) is continuous on [a,b], then ∫(a to b) f(x) dx = F(b) - F(a), where y = F(x) is any antiderivative of y = f(x), that is a function such as F'(x) = f(x).
Proof: Let g(x) = ∫(a to x) f(t) dt, we know from part I that g'(x) = f(x); that is g'(x) is an antiderivative of y = f(x). If y = F(x) is another antiderivative, then we know from a far away theorem that y = F(x) and y = g(x) differ by a constant:
F(x) = g(x) + C, for a < x < b
But both y = F(x) and y = g(x) are continuous. If we take the limit on both side of the equation (as x --> a^+ and x --> b^-) we see that it is also hold when x = a and x = b.
F(x) = g(x) + C, for a ≤ x ≤ b
If we put x = a in the formula for y = g(x), we get ∫(a to a) f(t) dt = 0
Using the 3 equation, we get
F(b) - F(a) = [g(b) + C] - [g(a) + C] = ∫(a to b) f(t) dt

QED

8) State de relationship among a sequence being bounded, monotonic, and convergent.
Bounded and monotonic sequence converges.

9) If -1 < r < 1, then lim(n-->∞) r^n = 0
If r < -1 or r > 1, then lim(n-->∞) r^n = ∞
If r = 1, lim(n-->∞) r^n = 1
If r = -1, lim(n-->∞) r^n = Ø

10) i) lim(n-->∞) (1 + x/n)^n = e^x
Let L = lim(n-->∞) (1 + x/n)^n
lnL = ln(lim(n-->∞) (1 + x/n)^n) = lim(n-->∞) ln(1 + x/n)^n = lim(n-->∞) n ln(1 + x/n) = lim(n-->∞) ln(1 + x/n) / (1/n) = (l'hopital rule) lim(n-->∞) [(-x/n^2)/(1 + x/n)]/[-1/n^2] = lim(n-->∞) -n^2(-x/n^2)/(1 + x/n) = lim(n-->∞) x/(1 + x/n) = x
L = e^x

ii) lim(n-->∞) r^n /n! = 0
If r < -1 or r > 1, then lim(n-->∞) r^n /n! = 0/∞ = 0
If r = 1, lim(n-->∞) r^n /n! = 1/∞ = 0
If r = -1, lim(n-->∞) r^n /n! = ±1/∞ = 0
If r < -1 or r > 1, then 1< |r| < ∞, thus lim(n-->∞) r^n /n! = (r...rr...)/(1·...·r·(r+1)...) = (r...r)/(1·...·r) r^∞/(r·(r+1)·(r+2)...) = (r...r)/(1·...·r) ·0 = 0

11) State the definition of convergence and divergence of a series in terms of its sequence of partial sums.
Given a sequence A_n = {a1, a2, a3, a4, ..., an}, we define a series attaches as Σ(n from 1 to ∞) A_n = a1 + a2 + a3 + a4 + ... + an
If the sum gives a finite number, the series is said to converge. If not, it is said to diverge.

12) See Dark's post.
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:34

Still asking questions. 36
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:36

Orz, I saw the calender on my computer and it say may 19th. I was like "damn! Did I missthought the date?"
Revenir en haut Aller en bas
spirit

spirit


Messages : 222
Date d'inscription : 25/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:36

XD you thought "tomorrow" is Friday?
Revenir en haut Aller en bas
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:38

Yep. But it is. Anyway. You know what I mean.

BUT GOD! I'M DOOMED FOR THE EXAM. SO NOT READY!!! 30
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:40

Me too!
So, stop wasting time now. Continue studying. 4
Although, I think my score won't even pass the average.
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:43

I studied all day. I didn't have life all week. 32
Well, except that I was watching MV at the same time. 64
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:44

Watching MV? You still have the mood for that?
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:46

I can't help it. I feel too lonely studying only with the sound of the computer buffering.
But what do you mean still have the mood. Are you that much stressed?
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:47

Aren't you? Isn't it natural to be stressed before the final exam? How can you be so relaxed?
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:49

I'm stressed at the end of the exam. When its almost time to hand in the exam. Or after the exam, while waiting for the result. In other time, I'm cool. 35
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:52

I envy your calming ability. I'm stressed from the beginning to the end. After the exam, I'm totally depressed. 34
Ok, let's get back to math now.
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:54

Dude, we should get some shut eye. It's TOMORROW the exam!
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:56

We still have at least 24 hours.
But, you're right. We have to wake up early. So, this morning, at 8AM, ultimate final study realm: everyone be here to see if anyone missed anything.
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Evil-mashimaro

Evil-mashimaro


Messages : 439
Date d'inscription : 15/09/2007
Age : 31

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:57

Yo, I wake up at noon! I'll only get 7 hours of sleep if I have to wake up at 8.
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 1:59

What about Friday, you need to wake up at 5.
So get prepared now.
8AM!
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 9:00

So, who's here?
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Shadow

Shadow


Messages : 237
Date d'inscription : 15/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 9:01

I am.
Revenir en haut Aller en bas
Sweet
Admin
Sweet


Messages : 270
Date d'inscription : 14/09/2007
Age : 32

Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 EmptyJeu 19 Mai 2011 - 9:02

That's it? -__-lll
Revenir en haut Aller en bas
https://vien-ici.1fr1.net
Contenu sponsorisé





Calculus study realm  - Page 7 Empty
MessageSujet: Re: Calculus study realm    Calculus study realm  - Page 7 Empty

Revenir en haut Aller en bas
 
Calculus study realm
Revenir en haut 
Page 7 sur 11Aller à la page : Précédent  1, 2, 3 ... 6, 7, 8, 9, 10, 11  Suivant
 Sujets similaires
-
» Biology study realm
» Linear algebra study realm

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Venez ici ! :: La vie :: Sciences et Savoirs-
Sauter vers: