| Calculus study realm | |
|
|
|
Auteur | Message |
---|
Dark
Messages : 184 Date d'inscription : 13/05/2008
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:35 | |
| SPIRIT?!!@#%^^&*^%@#$ OMG!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I'LL NEVER LET YOU GO FOR THE REST OF MY LIFE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:35 | |
| | |
|
| |
Shadow
Messages : 237 Date d'inscription : 15/09/2007 Age : 32
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:38 | |
| This was his idea. He's completely fine. After twelve hours of check up and recovery, we went back to our apartment and he got idea to do this. | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:40 | |
| I was fooled by some ghost monkey and its loyal dog. | |
|
| |
Shadow
Messages : 237 Date d'inscription : 15/09/2007 Age : 32
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:42 | |
| | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:42 | |
| You don't know? "Shadow" is a dog's name. | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:44 | |
| Ohoho. But thanks for everyone's support. I'll be healed by no time! | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:45 | |
| You're still injured? Is it serious? | |
|
| |
Shadow
Messages : 237 Date d'inscription : 15/09/2007 Age : 32
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:47 | |
| He is severely injure on the buttocks. But he'll be able to walk like normal human being in no time. Thus, nothing will prevent him to do the exam. | |
|
| |
Evil-mashimaro
Messages : 439 Date d'inscription : 15/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:47 | |
| XD Oh, I want to see how he walks now. Mehe | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:49 | |
| Ok, Spirit. Since you're fine, can you do #2,f on the volume of revolution exercise sheet? | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:50 | |
| Yes, my lady! | |
|
| |
Dark
Messages : 184 Date d'inscription : 13/05/2008
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:52 | |
| Here goes again. It's so late. Don't you want to rest and leave it for tomorrow? | |
|
| |
Sweet Admin
Messages : 270 Date d'inscription : 14/09/2007 Age : 32
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 3:54 | |
| It must be their ritual. XD
I'm going to sleep. See you guys tomorrow! Good night. | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 4:09 | |
| Use the washers method. as Dark has explained earlier
π∫(R^2 - r^2) dt = π∫(-1 to 2) ((2 - (y^2 - 2))^2 - (2 - y)^2) dy = π∫(-1 to 2) ((4 - y^2)^2 - (2 - y)^2) dy = π∫(-1 to 2) (16 - 8y^2 + y^4 - (4 - 4y + y^2)) dy = π∫(-1 to 2) (12 - 9y^2 + y^4 + 4y) dy = π(12y - 3y^3 + 1/5 y^5 + 2y^2)|(-1 to 2) = π(12(2) - 3(2)^3 + 1/5 (2)^5 + 2(2)^2 - (12(-1) - 3(-1)^3 + 1/5 (-1)^5 + 2(-1)^2)) = 108/5 π | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:17 | |
| Can you do this problem: Find the area enclosed by the function y^2 = x^2 - x^4. | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:30 | |
| To visualize the function: Function has symmetry in the y-axis, and x-axis (even power) y^2 = x^2 - x^4 = x^2 (1 - x^2), thus x-intercepts at x = 0, x = ±1 y-intercept at y^2 = (0)^2 - (0)^4 = 0 area = 4∫y dx = 4∫(0 to 1) (x^2 - x^4)^(1/2) dx = 2∫(0 to 1) 2x(1 - x^2)^(1/2) dx = -4/3 (1 - x^2)^(3/2) |(0 to 1) dx = 0 - (-4/3) = 4/3 | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:31 | |
| Find the area of a circle of radius r. | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:38 | |
| x^2 + y^2 = r^2
area = 4∫(0 to r) dx = 4∫(0 to r)(r^2 - x^2)^(1/2) dx =4∫(0 to π/2) (r^2 - r^2 (sin☼)^2)^(1/2) r cos☼ d☼ = 4r^2 ∫(0 to π/2) (cos☼)^2 d☼ = 4r^2 ∫(0 to π/2) (1/2 + 1/2 cos(2☼)) d☼ = 4r^2 (☼/2 + sin(2☼)/4)|(0 to π/2) = 4r^2 (π/4 + 0) = πr^2 Let x = r sin☼ dx = r cos☼ d☼ | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:39 | |
| Can you use the parametric equation for the last question? | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:46 | |
| y = r sin♪ x = r cos♪ 0 ≤ ♪ ≤ 2π
∫(0 to r) r sin♪ dx = ∫(2π to 0) r sin♪ (r -sin♪) d♪ = r^2 ∫(0 to 2π) (sin♪)^2 d♪ = r^2 ∫(0 to 2π) (1/2 - 1/2cos(2♪)) d♪ = r^2 (♪/2 - sin(2♪)/4)|(0 to 2π) = πr^2 | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 16:51 | |
| Find the volume generated by the cycloid x = █ - sin█, y = 1 - cos█, where 0 ≤ █ ≤ 2π, and the x-axis about the y-axis. | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 17:33 | |
| NB: ignore a Using shells: 2π∫(0 to 2π) (1 - cos█)x dx = 2π∫(0 to 2π) (1 - cos█)(█ - sin█)(1 - cos█) d█ = 2π∫(0 to 2π) (1 - 2cos█ + (cos█)^2)(█ - sin█) d█ = 2π∫(0 to 2π) (█ - 2█cos█ + █(cos█)^2 - sin█ + 2cos█sin█ - sin█(cos█)^2) d█ = 2π(█^2 /2 + cos█ + (sin█)^2 + (cos█)^3 /3)|(0 to 2π) + 2π∫(0 to 2π) (-2█cos█ + █(cos█)^2) d█ = 2π((2π)^2 /2 + cos(2π) + (cos(2π))^3 /3 - cos(0) - (cos(0))^3 /3) + 2π∫(0 to 2π) (-2█cos█ + █(cos█)^2) d█ = 2π(2π^2 + 1 + 1/3 - 1 - 1/3) + 2π∫(0 to 2π) (-2█cos█ + █(1/2 + 1/2 cos(2█))) d█ = 4π^3 - 4π∫(0 to 2π) █cos█ d█ + 2π∫(0 to 2π) (█/2 + █/2 cos(2█)) d█ = 4π^3 + 2π(█^2 /4)|(0 to 2π) - 4π∫(0 to 2π) █cos█ d█ - 2π∫(0 to 2π) █/2 cos(2█) d█ = 4π^3 + 2π^3 - 4π∫(0 to 2π) █cos█ d█ - π∫(0 to 2π) █cos(2█ d█ = 4π^3 + 2π^3 + 4π█sin█|(0 to 2π) - 4π∫(0 to 2π) sin█ d█ + sin(2█) π█/2|(0 to 2π) - π/2 ∫(0 to 2π) sin(2█) d█ = 4π^3 + 2π^3 + 4π cos█|(0 to 2π) + π/4 cos(2█)|(0 to 2π) = 6n^3 Integrate by parts: f(x) = █ f'(x) = 1 g(x) = -sin█ g'(x) = cos█ --- f(x) = █ f'(x) = 1 g(x) = -sin(2█)/2 g'(x) = cos(2█) | |
|
| |
JellyFish
Messages : 166 Date d'inscription : 18/09/2007 Age : 30
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 17:40 | |
| Oh, non. This is too confusing to read... | |
|
| |
spirit
Messages : 222 Date d'inscription : 25/09/2007 Age : 31
| Sujet: Re: Calculus study realm Mer 18 Mai 2011 - 17:41 | |
| That's your problem. | |
|
| |
Contenu sponsorisé
| Sujet: Re: Calculus study realm | |
| |
|
| |
| Calculus study realm | |
|